AIを活用して航空券の購入予測分析を自動化する実験実施(JAL/NEC)

2017年11月7日19:28

日本航空(JAL)と日本電気(NEC)は、AI(人工知能)を活用し、JALが運営する航空券予約サイトのアクセスログデータなどを分析し、航空券の購入予測分析を行う実証実験を2017年9月~11月に実施した。

データ分析・予測モデル構築のフロー(JAL/NEC)

同取り組みでは、JALマイレージバンク会員(JMB会員)を対象にJALが運営するホームページ(航空券予約サイト)でのWebアクセスログをはじめ、会員情報や搭乗履歴などのデータを使用した。航空券を購入するにあたり、JMB会員がWeb上でどのような行動をしているかということをテーマに、予測分析自動化技術で「特徴量(分析に有効なデータ項目)」の推測と「予測モデル」の自動構築が可能であるかについて、実証実験を行った。

その結果、一般的に分析に時間を要する大量のログデータから、これまで人間が気付かなかったような時間軸を考慮したページ閲覧行動や特定のクレジットカードの利用回数などの、特徴的な顧客行動が数時間程度で発見できたという。また、「予測モデル」に関しては、経験豊富なデータサイエンティストが設計したモデルと同程度の精度が得られることを確認したそうだ。

これにより、JALのホームページにおいてJMB会員がどのような購買行動をしているのかを短時間で把握でき、利用者に対してより適切なタイミングでのキャンペーンを通知できるなどの情報提供が可能となるとした。また、短時間で「予測モデル」が構築できることから、現行よりも数多くの施策を立案・実施できるようになるという。

今回活用した「予測分析自動化技術」は、機体整備など、マーケティング以外のデータからも、業務や分析の事前知識なしに特徴量を自動で設計・発見することができる可能性があり、さまざまな業務において予測モデルの高速化が期待できるとしている。

この記事の著者

ペイメントナビ編集部

ペイメントナビ編集部

カード決済、PCI DSS、ICカード・ポイントカードの啓蒙ポータルサイト

page toppagetop